检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学测绘学院 [2]南京师范大学虚拟地理环境教育部重点实验室,江苏南京210046
出 处:《西安电子科技大学学报》2008年第5期946-950,共5页Journal of Xidian University
基 金:国家自然科学基金资助(40401052)
摘 要:在曲线数据压缩的Ramer-Douglas-Peucker(RDP)算法中,只有那些垂距大于限差的点得以保留,而原始曲线上所有其他点则会被删除,这就使得压缩后的数据在保留点和删除点处精度不一致.通过采用总体最小二乘法对原始数据进行分段拟合,提高了压缩数据的精度.实验结果表明,与RDP算法相比,该算法可以更好地逼近原始数据,特别是当给定限差较大时,相对RDP算法的精度改善更为明显.In the well-known Ramer-Douglas-Peucker (RDP) algorithm for polyline data compression, only the points with distance greater than a given tolerance from polyline (a chain of vertices) to segment (the first and last vertices of the polyline) are retained, while all other points on the original polyline are deleted. This gives rise to inconsistent data compression accuracy among the retained and the deleted points. In this paper, a new algorithm based on total least squares is presented, which takes each subset of a polyline as a processing unit and uses all the points on the original polyline to fit a new line. These fitted lines are intersected to form a final polyline, thus leading to improved compression accuracy. An experiment is included, which shows that compared with the traditional RDP algorithm, the proposed method has smaller approximation errors, especially for larger tolerance.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.47.108