检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学机械工程与自动化学院,福州350002
出 处:《系统工程理论与实践》2008年第10期96-101,共6页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(70571015);福建省自然科学基金(A0620001)
摘 要:为了提高灰色GM(2,1)模型的预测精度,本文首先对灰色GM(2,1)模型的向前、向后差分进行线性组合出灰色GM(2,1,λ)模型,利用参数λ修正背景值;然后引入参数ρ对原始数列进行数乘变换,进一步将模型拓展为灰色GM(2,1,λ,ρ)模型.由于参数λ,ρ与误差之间为明显的非线性关系,难以解析,本文基于微粒群算法(PSO),给出PSO-GM(2,1,λ,ρ)优化方法.在该方法中,用λ,ρ构成一个二维的微粒群,以绝对的平均相对误差作适应度函数,以其最小为目标,求解最优的λ,ρ值.实例计算表明,该方法收敛速度快,预测精度高于普通模型,而且可满足实际需要.In order to improve the prediction accuracy, firstly GM (2, 1 ) has been improved with the linear combination of the forward and backward differenee scheme, where the parameter λ has been used to correct the background value; secondly the parameter ρ was used for a multiple transformation on the initial data, a new GM(2, 1,λ, ρ) has been constructed in this paper, Because of the nonlinear traits between λ, ρ and the prediction errors, they are difficult to be solved, then GM(2, 1,λ, ρ ) based on Particle Swarm Optimization( PSO-GM (2, 1, λ, ρ) ) has been proposed, where ), and ρ have been constituted a two-dimensional particle swarm, absolute of mean relative error has been as fitness function, its minimization has been as objective function, then the best λ, ρ have been solved. The practical examples show that the speed of convergence in PSO-GM (2,1,λ, ρ) is rapid, the prediction accuracy is much higher than that of the GM(2,1 ), and it can meet practical need.
关 键 词:灰色GM(2 1)模型 背景值 数乘变换 微粒群算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175