DFT-S-GMC无线接入系统56点快速傅立叶变换算法设计  

56points FFT Algorithm for DFT-S-GMC Mobile Communication Systems

在线阅读下载全文

作  者:夏登俊[1] 王培康[1] 张小东[2] 

机构地区:[1]中国科学技术大学信息科学与电子工程系,安徽合肥230027 [2]中国科学院微系统所,上海200050

出  处:《通信技术》2008年第10期94-96,共3页Communications Technology

摘  要:提出了应用于DFT-S-GMC(DFT Spread Generalized Multi-carrier)宽带无线接入系统中56点DFT/IDFT的快速算法。该算法组合Cooley-Tukey和Winograd算法的设计方法,将56点三次奇偶分解为8个7点的傅立叶变换,经特定的整序算法处理后,由Winograd算法得到各7点DFT/IDFT的快速算法,最后借鉴Cooley-Tukey算法的蝶形运算得到56点FFT/IFFT的运算结果。该算法的运算速度比复合数算法快若干倍,亦可推广用于设计N=P*2M(P=3,5,7,11等)这一类特殊点的FFT/IFFT算法。A fast computation algorithm for 56 points DFT/IDFT is proposed, and is adopted in the DFT spread Generalized Multi-Carrier (DFT-S-GMC) wideband mobile communication systems. This fast computation algorithm first divides the 56 points into 8 groups, each with 7 points, based on parity-decomposition. Then, the FFT/IFFT results for each group are obtained by using Winograd Fourier Transform Algorithm. Finally, the result of 56 points FFT/IFFT is figured out through the Cooley-Tukey Algorithm. A new permutation algorithm for permuting the input series to match the computation is described as well. The methodology, which combines Cooley-Tukey Algorithm with Winograd Fourier Transform Algorithm and permutation algorithm, can be adopted to design FFT/IFFT algorithm for a special class of points (N=P*2^M, P=3,5,7,11, etc.).

关 键 词:DFT—S—GMC宽带无线接入 Winograd傅立叶变换算法 Cooley-Tukey算法 整序算法 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象