检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Key Laboratory of Traffic Engineering,Beijing University of Technology
出 处:《Tsinghua Science and Technology》2008年第5期632-635,共4页清华大学学报(自然科学版(英文版)
基 金:the National Natural Science Foundation of China (No. 50478041);the Natural Science Foundation of Beijing (No. 8053019)
摘 要:Traditional trip generation forecasting methods use unified average trip generation rates to determine trip generation volumes in various traffic zones without considering the individual characteristics of each traffic zone. Therefore, the results can have significant errors. To reduce the forecasting error produced by uniform trip generation rates for different traffic zones, the behavior of each traveler was studied instead of the characteristics of the traffic zone. This paper gives a method for calculating the trip efficiency and the effect of traffic zones combined with a destination selection model based on disaggregate theory for trip generation. Beijing data is used with the trip generation method to predict trip volumes. The results show that the disaggregate model in this paper is more accurate than the traditional method. An analysis of the factors influencing traveler behavior and destination selection shows that the attractiveness of the traffic zone strongly affects the trip generation volume.Traditional trip generation forecasting methods use unified average trip generation rates to determine trip generation volumes in various traffic zones without considering the individual characteristics of each traffic zone. Therefore, the results can have significant errors. To reduce the forecasting error produced by uniform trip generation rates for different traffic zones, the behavior of each traveler was studied instead of the characteristics of the traffic zone. This paper gives a method for calculating the trip efficiency and the effect of traffic zones combined with a destination selection model based on disaggregate theory for trip generation. Beijing data is used with the trip generation method to predict trip volumes. The results show that the disaggregate model in this paper is more accurate than the traditional method. An analysis of the factors influencing traveler behavior and destination selection shows that the attractiveness of the traffic zone strongly affects the trip generation volume.
关 键 词:traffic demand forecasting trip generation ATTRACTIVENESS disaggregate model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117