检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学计算机科学与技术系,北京100084
出 处:《计算机应用》2008年第11期2725-2728,共4页journal of Computer Applications
摘 要:由于Web文本迅速增多,对这些文本,特别是用户主动发布的评论数据进行挖掘和分析,识别出其情感趋向及演化规律,可以更好地理解用户的消费习惯,分析热点舆情,给企业、政府等机构提供重要的决策依据。首先对情感分析的研究对象和目标进行了定义和说明,并给出基本的研究思路。然后,在主观性句子识别任务上,详细回顾和分析了主要的处理方法;在观点分类的特征抽取上,重点介绍和讨论了两类主流的处理思路——基于情感词和基于频繁模式挖掘。接着简要介绍了其他一些相关的情感分析问题。最后总结了情感分析的现有成就和不足,以及面临的挑战,并对其发展前景进行了展望。With the rapid growth of the Web text data, mining and analyzing these text data, especially the online review data posted by the users, can greatly help better understand the users' consuming habits and public opinions, and plays an important role in decision-making for the enterprises and the government. This survey first introduces the motivation, research problems and goals of sentiment analysis, and presents some basic technologies used in sentiment analysis. It then describes one of the major tasks in sentiment analysis, subjective sentence detection, by reviewing and analyzing some recent work in this area. Next, it focuses on another important task in sentiment analysis, opinion classification, and discusses two leading feature extraction techniques for opinion classification, sentimental word based and frequent pattern based methods. Furthermore, it also introduces several other relevant sentiment analysis problems. Finally, the paper summarizes the current status, remaining challenges, and future directions in the field of sentiment analysis.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222