In vitro biocompatibility of three chitosan/polycation composite materials for nerve regeneration  被引量:2

In vitro biocompatibility of three chitosan/polycation composite materials for nerve regeneration

在线阅读下载全文

作  者:Zhenhuan Zheng Yujun Wei Gan Wang Yandao Gong Xiufang Zhang 

机构地区:[1]State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China

出  处:《Neural Regeneration Research》2008年第8期837-842,共6页中国神经再生研究(英文版)

基  金:National Basic Research Program of China, ("973" Program), No. 2005CB623905;Tsinghua-Yue-Yuen Medical Science Fund, Beijing Municipal Science & Technology Commission, No. H060920050430;the National Natural Science Foundation of China, No. 30670528, 30700848, 30772443

摘  要:BACKGROUND:It has been reported that chitosan nerve conduits could support axon elongation and improve relevant function during in vivo nerve regeneration. OBJECTIVE: To investigate in vitro biocompatibility of three novel, chitosan/polycation composite materials for nerve regeneration in cultured mouse Schwann cells and PC12 cells. DESIGN, TIME AND SETTING: The observational, control experiments for nerve tissue engineering were performed at the Department of Biological Sciences and Biotechnology of Tsinghua University from August 2007 to January 2008. MATERIALS: Mouse Schwann cells were isolated from the sciatic nerve of 5–7-day-old BALB/C mice. PC12 cells were purchased from the American Type Culture Collection (ATCC, USA). Chitosan was purchased from Tsingdao Haisheng Co., China. Poly-L-lysine hydrochloride (PLL), polyethyleneimine (PEI) poly-L-ornithine hydrobromide (POR), and S-100 antibody was purchased from Sigma Chemical Co., USA. Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Chemical Co., Japan. METHODS: Three chitosan/polycation composite materials for nerve regeneration (PLL-0.25, PEI-0.25, and POR-0.25) were produced by blending chitosan with 0.25% (w/w) poly-L-lysine, polyethyleneimine, and poly-L-ornithine. Pure chitosan was utilized as the control. After 3 days of culture, the morphology of mouse Schwann and PC12 cells cultured on all substrates was observed with an inverted phase contrast microscope. Mouse Schwann cells were stained by immunofluorescence labeling S-100 protein and nuclei, followed by identification with a confocal laser-scanning microscope. The amount of proliferating mouse Schwann and PC12 cells was determined by CCK-8 after 1, 3, and 5 days in culture. The level of PC12 cell differentiation on all substrates was assessed by measuring neurite length at 1, 3, and 5 days after seeding. MAIN OUTCOME MEASURES: Morphology and amount of proliferation of mouse Schwann cells and PC12 cells cultured on chitosan and three polycation-modifBACKGROUND:It has been reported that chitosan nerve conduits could support axon elongation and improve relevant function during in vivo nerve regeneration. OBJECTIVE: To investigate in vitro biocompatibility of three novel, chitosan/polycation composite materials for nerve regeneration in cultured mouse Schwann cells and PC12 cells. DESIGN, TIME AND SETTING: The observational, control experiments for nerve tissue engineering were performed at the Department of Biological Sciences and Biotechnology of Tsinghua University from August 2007 to January 2008. MATERIALS: Mouse Schwann cells were isolated from the sciatic nerve of 5–7-day-old BALB/C mice. PC12 cells were purchased from the American Type Culture Collection (ATCC, USA). Chitosan was purchased from Tsingdao Haisheng Co., China. Poly-L-lysine hydrochloride (PLL), polyethyleneimine (PEI) poly-L-ornithine hydrobromide (POR), and S-100 antibody was purchased from Sigma Chemical Co., USA. Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Chemical Co., Japan. METHODS: Three chitosan/polycation composite materials for nerve regeneration (PLL-0.25, PEI-0.25, and POR-0.25) were produced by blending chitosan with 0.25% (w/w) poly-L-lysine, polyethyleneimine, and poly-L-ornithine. Pure chitosan was utilized as the control. After 3 days of culture, the morphology of mouse Schwann and PC12 cells cultured on all substrates was observed with an inverted phase contrast microscope. Mouse Schwann cells were stained by immunofluorescence labeling S-100 protein and nuclei, followed by identification with a confocal laser-scanning microscope. The amount of proliferating mouse Schwann and PC12 cells was determined by CCK-8 after 1, 3, and 5 days in culture. The level of PC12 cell differentiation on all substrates was assessed by measuring neurite length at 1, 3, and 5 days after seeding. MAIN OUTCOME MEASURES: Morphology and amount of proliferation of mouse Schwann cells and PC12 cells cultured on chitosan and three polycation-modif

关 键 词:BIOCOMPATIBILITY CHITOSAN nerve regeneration POLYCATION 

分 类 号:R318.08[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象