慢性肩袖病变的MR特点——大体解剖和组织学对照研究  

MR Characterization of Chronic Rotator Cuff Lesion-a Comparison with Gross Anatomy and Histology

在线阅读下载全文

作  者:邓霞[1] 许建荣[1] 李磊[1] 朱建善[2] 

机构地区:[1]上海交通大学医学院附属仁济医院放射科 [2]上海交通大学医学院附属仁济医院病理科

出  处:《中国医学计算机成像杂志》2008年第5期429-432,共4页Chinese Computed Medical Imaging

摘  要:目的:与大体解剖和组织学对照,探讨慢性肩袖损伤的MR影像特点。材料和方法:采用Philips Gy- roscant 1.0-NT磁共振扫描仪。对20只人离体肩关节标本进行MR成像。结果:肌腱变性表现为T_1W/ PDW信号增高,无明显形态改变。依据组织学结果,我们将慢性肌腱部分撕裂分为三型:典型撕裂口(Ⅰ型)表现为肌腱撕裂口T_2WI水样高信号;瘢痕型(Ⅱ型)信号表现多样,常表现为T_2序列稍高信号伴肌腱显著增粗,多见于慢性肩袖损伤;肌腱内撕裂(Ⅲ型)与肌腱变性难以区分。肌腱完全撕裂包括"隧道征"、宽大裂口伴或不伴肌腱断端退缩三种表现。结论:慢性肩袖损伤尤其是肩袖部分撕裂的MR表现较为复杂,必须将信号和形态特点相结合慎重诊断。Purpose: To investigate the MR characterization of chronic rotator cuff injury, compared with gross anatomy and histology. Materials and Methods: The study group consisted of 20 cadaver shoulders. All shoulders underwent identical MR examinations on a 1.0T MR unit (Philips Gyroscant 1.0 - NT) . Results: Tendon degeneration was characterized by increased intrasubstance signal on T 1 - weighted or PD - weighted images with normal configuration. According to the histological images, partial - thickness tear had 3 types. Focal area of tendon discontinuity filled with T2 bright fluid signal was the most specific sign of partial - thickness tears (type Ⅰ) . The signal intensity was various, usually slight hyperintense on T2 sequence, in scar - type (type Ⅱ ) with distinctly morphologic changes, which was often seen in cases of chronic injury. It was difficult to differentiate intrasubstance tear (type Ⅲ ) from degeneration. Full - thickness tear showed " tunnel sign", defect with or without retraction of the ruptured tendon. Conclusion: MR characterization of chronic rotator cuff injury especially partial tears is very complicated. MR diagnosis must be carefully estimated by combining signal intensity and morphology.

关 键 词:肩袖 变性 撕裂 磁共振成像 组织学 

分 类 号:R445.2[医药卫生—影像医学与核医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象