检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州大学化学系,河南郑州450052 [2]山西省高平市环境监测站,山西高平048400
出 处:《河南科技大学学报(自然科学版)》2008年第6期96-99,共4页Journal of Henan University of Science And Technology:Natural Science
基 金:国家自然科学基金项目(20505015);河南省教育厅自然科学研究项目(2006150026)
摘 要:粒子群优化(PSO)算法是一种新兴的优化技术,该算法简单易实现,可调参数少,已广泛应用于许多研究领域,但PSO在化学中的应用还较少。本文将改进的粒子群优化算法用于多元线性回归的变量选择,并将其用于芳香胺的致癌活性的构效关系研究,结果表明:改进的粒子群优化算法能搜索到最优的变量组合,具有较快的收敛速度。Particle swarm optimization (PSO) algorithm is a new optimization technique.The advantages of PSO are that PSO is easy to implement and there are few parameters to adjust.PSO has been successfully applied in many areas.To our knowledge,there were few reports concerning the application of PSO in quantitative structure-activity relationships(QSARs). In this paper,the modified discrete PSO algorithm is used to select variables in multiple linear regression modeling and to predict carcinogenicity of aromatic amines.Experimental results show that the modified PSO is a useful tool for variable selection which converges quickly towards the optimal position.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.142.228