检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学计算机学院,陕西西安710071 [2]西安电子科技大学雷达信号处理国家重点研究室,陕西西安710071 [3]济南大学理学院,山东济南250012
出 处:《系统工程与电子技术》2008年第10期1815-1818,共4页Systems Engineering and Electronics
基 金:中意科技合作项目基金资助课题
摘 要:针对高分辨距离像(HRRP)可分性低和维数高的问题,提出一种新的雷达自动目标识别(RATR)方法:dLDA&SVM。先采用直接线性判别分析在HRRP的幅度谱空间进行特征提取,然后在子空间中采用角域均值模板库训练one-against-all支撑向量机(SVM)多类分类器进行目标识别。并设计了最短距离分类器与SVM分类器比较。基于外场实测数据的实验结果表明,与LDA幅度谱子空间法,幅度谱原空间法相比,dLDA&SVM可显著降低数据维数并提高识别性能。High resolution range profile (HRRP) has the problems of low separability and high dimensionality. A novel radar automatic target recognition (RATR) method, i. e. , dLDA&SVM, is presented. Firstly, a direct linear discriminant analysis (dLDA) is used to perform feature extraction in the amplitude spectrum space of HRRP, and then the mean of each azimuth in the resulting amplitude spectrum subspaee is used to train an one-against-all support vector machine (SVM) rnulti-class classifier for target recognition. A shortest distance classifier is also designed for comparing with the SVM classifier. Experimental results for measured data show that comparing with the target recognitions in the amplitude spectrum subspace of LDA and the original amplitude spectrum space, dLDA&SVM can remarkably reduce data dimensionality and improves recognition performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249