A RELAXATION RESULT OF FUNCTIONALS IN THE SPACE SBD(Ω)  

A RELAXATION RESULT OF FUNCTIONALS IN THE SPACE SBD(Ω)

在线阅读下载全文

作  者:吕中学 杨孝平 

机构地区:[1]School of Mathematical Science,Xuzhou Normal University [2]School of Sciences,Nanjing University of Science and Technology

出  处:《Acta Mathematica Scientia》2008年第4期770-778,共9页数学物理学报(B辑英文版)

基  金:the Doctorial Programme Foundation of EducationMinistry of of China(20030288002);the Science Foundation of Jiangsu Province(BK2006209);NaturalScience Foundation of Jiangsu Higher Education Bureau(07KJD110206);NNSF of China(10771181)

摘  要:In this article,the authors obtain an integral representation for the relaxation of the functionalF(x,u,Ω):={∫^f(x,u(x),εu(x))dx Ω if u∈W^1,1(Ω,R^N), +∞ otherwise, in the space of functions of bounded deformation,with respect to L^1-convergence.Here Eu represents the absolutely continuous part of the symmetrized distributional derivative Eu.f(x,p,ξ)satisfying weak convexity assumption.In this article,the authors obtain an integral representation for the relaxation of the functionalF(x,u,Ω):={∫^f(x,u(x),εu(x))dx Ω if u∈W^1,1(Ω,R^N), +∞ otherwise, in the space of functions of bounded deformation,with respect to L^1-convergence.Here Eu represents the absolutely continuous part of the symmetrized distributional derivative Eu.f(x,p,ξ)satisfying weak convexity assumption.

关 键 词:Integral representation RELAXATION special functions with bounded deformation 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象