检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics,University of Allahabad,Allahabad,211 001,India [2]Allahabad Mathematical Society,10,C.S.P.Singh Marg,Allahabad,211 001,India
出 处:《Communications in Theoretical Physics》2008年第9期551-556,共6页理论物理通讯(英文版)
摘 要:The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy hs( Ф, A) of partition A of a Boolean algebra B with respect to a state s and a state preserving homomorphism Ф, we prove a few results on that, define the entropy of a dynamical system hs(Ф), and show its invariance. The concept of sufficient families is also given and we establish that hs (Ф) comes out to be equal to the supremum of hs (Ф,A), where A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system ( L, s, Ф), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B, s0, Ф), where B is a Boolean algebra and so is a state on B.
关 键 词:orthomodular lattices quantum logic valuation ISOMORPHISM PARTITIONS ENTROPY quantum dynamical systems sufficient families
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28