机构地区:[1]Department of Computer Science and Technology,University of Science and Technology of China [2]School of Computer Science,University of Adelaide
出 处:《Journal of Computer Science & Technology》2008年第6期973-987,共15页计算机科学技术学报(英文版)
基 金:supported by the "Hundred Talents Program" of CAS and the National Natural Science Foundation of China under Grant No. 60772034.
摘 要:Detecting duplicates in data streams is an important problem that has a wide range of applications. In general, precisely detecting duplicates in an unbounded data stream is not feasible in most streaming scenarios, and, on the other hand, the elements in data streams are always time sensitive. These make it particular significant approximately detecting duplicates among newly arrived elements of a data stream within a fixed time frame. In this paper, we present a novel data structure, Decaying Bloom Filter (DBF), as an extension of the Counting Bloom Filter, that effectively removes stale elements as new elements continuously arrive over sliding windows. On the DBF basis we present an efficient algorithm to approximately detect duplicates over sliding windows. Our algorithm may produce false positive errors, but not false negative errors as in many previous results. We analyze the time complexity and detection accuracy, and give a tight upper bound of false positive rate. For a given space G bits and sliding window size W, our algorithm has an amortized time complexity of O(√G/W). Both analytical and experimental results on synthetic data demonstrate that our algorithm is superior in both execution time and detection accuracy to the previous results.Detecting duplicates in data streams is an important problem that has a wide range of applications. In general, precisely detecting duplicates in an unbounded data stream is not feasible in most streaming scenarios, and, on the other hand, the elements in data streams are always time sensitive. These make it particular significant approximately detecting duplicates among newly arrived elements of a data stream within a fixed time frame. In this paper, we present a novel data structure, Decaying Bloom Filter (DBF), as an extension of the Counting Bloom Filter, that effectively removes stale elements as new elements continuously arrive over sliding windows. On the DBF basis we present an efficient algorithm to approximately detect duplicates over sliding windows. Our algorithm may produce false positive errors, but not false negative errors as in many previous results. We analyze the time complexity and detection accuracy, and give a tight upper bound of false positive rate. For a given space G bits and sliding window size W, our algorithm has an amortized time complexity of O(√G/W). Both analytical and experimental results on synthetic data demonstrate that our algorithm is superior in both execution time and detection accuracy to the previous results.
关 键 词:data stream duplicate detection bloom filter approximate query sliding window
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...