检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙斌[1,2]
机构地区:[1]中国矿业大学煤炭资源与安全开采国家重点实验室安全与管理信息研究室,北京100083 [2]浙江警官学院安全防范系,浙江杭州310018
出 处:《辽宁工程技术大学学报(自然科学版)》2008年第5期661-664,共4页Journal of Liaoning Technical University (Natural Science)
基 金:浙江省高校青年教师基金资助项目[2004281];浙江教育科学规划基金资助项目(SC206)
摘 要:针对属性权重完全未知且属性值以专家经验给出的多属性决策问题,提出了利用属性重要度计算权重的分配方法。根据粗糙集中的相对正域概念,探讨了如何运用属性重要度确定各属性的权重。将权重确定问题转化为粗糙集中属性重要性评价问题,建立了关于风险评价的关系数据模型,经过属性值特征化建立了知识系统,在数据分析下通过分析评判方法对评价对象的支持度和重要性,计算出风险评价模型的权重。该方法克服了传统权重确定方法的主观性,使得风险评价方法更具客观性,从而提高了火灾危险源风险评价的精度,通过实例说明该方法更加有效合理。Aiming at the information about the attribute weights in unknown completely and the attribute values relied on expert experience, the author puts forward an weight allocation method based on importance of attribute in multi-attribute decision-making. This method discusses how to ascertain the weight allocation by applying the attribute importance based on the relative positive region conception. Determining weight is translated into estimating significance of attributes among rough sets .A relation data model about risk assessment is established. Knowledge systems are built through making attribute value into eigenvalue. In the data analyzsis, the weight of a risk assessment model is computed by analyzing the support and significance of forecasting method for the predicted object. The proposed approach overcomes the subjectivity of traditional determination to weight, and makes risk assessment more objective, thus improving the precision of risk assessment for fire hazard. At last, an example is given to show the methods more effective and rational than before.
分 类 号:TD75[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62