检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学信息科学与工程学院,浙江宁波315211
出 处:《计算机应用研究》2008年第11期3480-3482,3506,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(60672070);浙江省科技计划资助项目(2007C21G2070004)
摘 要:对于数字视频镜头突变切换的检测,一般有模板匹配法、直方图法等基本算法,但这些算法都需要确定阈值,并在实际检测中通常达不到较高的检测精度。提出了一种新的基于BP神经网络的视频镜头突变检测算法,该算法选取模板匹配二次差分和直方图二次差分作为特征,利用神经网络的自组织、自学习能力实现镜头突变检测,然后以闪光检测来提高检测的可靠性。实验结果表明,该算法能够有效地检测视频的镜头突变,无须设定阈值,具有计算简单、易于实现的优点。There are some basic algorithms, including the template-matching algorithm, the histogram algorithm, etc, used to detect abrupt shot change in digital video, but they all need to fix on thieshold and can' t always attain high precision in practical detecting. This paper proposed a new BP neural network based video abrupt shot change detection algorithm. It selected template-matching twice-difference and histogram twice-difference as characters, utilized the neural network' s ability of self- organization and self-learning to actualize abrupt shot change detection, then performed the flashlight detection to improve the detecting reliability. Experimental results show that this method achieves satisfying-precision and recall of detecting shot boundaries compared with the conventional schemes, at the same time, it don' t need threshold and easy to implement.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.207.126