On the Terai-Jésmanowicz Conjecture  被引量:1

On the Terai-Jésmanowicz Conjecture

在线阅读下载全文

作  者:Jian Ye XIA Ping Zhi YUAN 

机构地区:[1]Department of Basic Science, Guangdong University of Finance, Guangzhou 510521, P. R. China [2]School of Mathematics, South China Normal University Guangzhou 510631, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2008年第12期2061-2064,共4页数学学报(英文版)

基  金:NSF of China (No.10571180);the Guangdong Provincial Natural Science Foundation (No.8151027501000114)

摘  要:In this paper, we prove that if a, b and c are pairwise coprime positive integers such that a^2+b^2=c^r,a〉b,a≡3 (mod4),b≡2 (mod4) and c-1 is not a square, thena a^x+b^y=c^z has only the positive integer solution (x, y, z) = (2, 2, r). Let m and r be positive integers with 2|m and 2 r, define the integers Ur, Vr by (m +√-1)^r=Vr+Ur√-1. If a = |Ur|,b=|Vr|,c = m^2+1 with m ≡ 2 (mod 4),a ≡ 3 (mod 4), and if r 〈 m/√1.5log3(m^2+1)-1, then a^x + b^y = c^z has only the positive integer solution (x,y, z) = (2, 2, r). The argument here is elementary.In this paper, we prove that if a, b and c are pairwise coprime positive integers such that a^2+b^2=c^r,a〉b,a≡3 (mod4),b≡2 (mod4) and c-1 is not a square, thena a^x+b^y=c^z has only the positive integer solution (x, y, z) = (2, 2, r). Let m and r be positive integers with 2|m and 2 r, define the integers Ur, Vr by (m +√-1)^r=Vr+Ur√-1. If a = |Ur|,b=|Vr|,c = m^2+1 with m ≡ 2 (mod 4),a ≡ 3 (mod 4), and if r 〈 m/√1.5log3(m^2+1)-1, then a^x + b^y = c^z has only the positive integer solution (x,y, z) = (2, 2, r). The argument here is elementary.

关 键 词:exponential diophantine equations Terai-Jesmanowicz conjecture Lucas sequences 

分 类 号:O156.4[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象