检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学计算机学院,陕西西安710072
出 处:《西北工业大学学报》2008年第5期588-591,共4页Journal of Northwestern Polytechnical University
基 金:国家自然科学基金(60373108)资助
摘 要:图像通常用关键词表示其语义信息,基于关键词的图像检索方式存在因用户理解差异而导致对图像语义理解的歧义问题。文中利用语言学本体WordNet中单词的语义层次,并综合考虑单词之间的同义关系、上下位关系等不同层次的抽象语义信息,通过建立检索词和标注词间的语义关联,统一不同用户对图像语义的理解和描述,再结合单词在不同抽象层次的语义信息计算图像的相似性距离,实现了基于高层语义的图像检索。实验结果表明,上述方法能有效提高图像的检索性能。Aim. Words in image label frequently have multi-senses, leading to unsuitable search results for users. We now propose using WordNet to disambiguate image senses. In section 1 of the full paper, we discuss semantic hierarchy of images. Section 2 explains the calculation of image semantic similarity measure. What we do in section 2 is essentially that, we, employing the multi-relations between words, such as synonyms, hyponyms and hypernyms provided by WordNet, build the relationships between image labels, thus unifying the description of image label. The image semantic similarity measure can be calculated by eq. (7). In section 3, we give experimental results shown in Fig. 1 and Table 1, which indicate preliminarily that the calculated image semantic similarity measure in our semantics-based image retrieval method gives, in general, better performance as compared with that of the label-based method.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.110.128