The Equivalence between Bergman Metric and Einstein-Kahler Metric on the Cartan-Hartogs Domain of the Fourth Type  被引量:4

The Equivalence between Bergman Metric and Einstein-Kahler Metric on the Cartan-Hartogs Domain of the Fourth Type

在线阅读下载全文

作  者:ZHAO Xiao-xia LIN Ping 

机构地区:[1]College of Information Science, Beijing Language and Gulture University, Beijing 100083, China [2]Department of Mathematics, Capital Normal University, Beijing 100037, China

出  处:《Chinese Quarterly Journal of Mathematics》2008年第3期317-324,共8页数学季刊(英文版)

基  金:the NSFC(10701017)

摘  要:In this paper, we discuss the invariant complete metric on the Cartan-Hartogs domain of the fourth type. Firstly, we find a new invariant complete metric, and prove the equivalence between Bergman metric and the new metric; Secondly, the Ricci curvature of the new metric has the super bound and lower bound; Thirdly,we prove that the holomorphic sectional curvature of the new metric has the negative supper bound; Finally, we obtain the equivalence between Bergman metric and Einstein-Kahler metric on the Cartan-Hartogs domain of the fourth type.

关 键 词:Cartan-Hartogs domain equivalence of invariant metric Bergman metric Einstein-Kahler metric 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象