A parameter optimization approach to robust PI-controller design for systems with interval plants  被引量:1

A parameter optimization approach to robust PI-controller design for systems with interval plants

在线阅读下载全文

作  者:Qinghe WU Bin LV Li XU 

机构地区:[1]Department of Automatic Control, Beijing Institute of Technology, Beijing 100081, China [2]Department of Electronics and Information Systems, Akita Prefectural University, 84-4 Ebinokuchi, Tsuchiya, Honjo, Akita 015-0055, Japan

出  处:《控制理论与应用(英文版)》2008年第4期435-441,共7页

基  金:the National Natural Science Foundation of China (No.69904003);the Research Fund for Doctoral Program of the Higher Education (RFDP) (No.1999000701.)

摘  要:The purpose of this paper is to develop an analytic way for designing optimal PI-controllers for the interval plant family. Optimality means that the coefficient intervals of the plant stabilized by a PI-controller is maximized. It will be shown that the optimization problem can be formulated in terms of an eigenvalue minimization problem of matrix pairs of the form (H(h0, g0), H(δ1,k, δ2,k)), where k= 1, 2, 3, 4 and both H(h0, g0) and H(δ1,k,δ2,k) are frequency independent Hurwitz-like matrices. A numerical example is provided to illustrate that optimal controller parameters can be successfully obtained by a two-dimensional search.The purpose of this paper is to develop an analytic way for designing optimal PI-controllers for the interval plant family. Optimality means that the coefficient intervals of the plant stabilized by a PI-controller is maximized. It will be shown that the optimization problem can be formulated in terms of an eigenvalue minimization problem of matrix pairs of the form (H(h0, g0), H(δ1,k, δ2,k)), where k= 1, 2, 3, 4 and both H(h0, g0) and H(δ1,k,δ2,k) are frequency independent Hurwitz-like matrices. A numerical example is provided to illustrate that optimal controller parameters can be successfully obtained by a two-dimensional search.

关 键 词:Interval plants Stability radius EIGENVALUES PI-controller 

分 类 号:O231[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象