检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《沈阳师范大学学报(自然科学版)》2008年第4期403-405,共3页Journal of Shenyang Normal University:Natural Science Edition
摘 要:以模糊代数里的模糊线性空间理论为基础,首先在L是完备格时,建立了反模糊群、反模糊环的定义,然后从模糊集的隶属度角度进行研究,得到反模糊域及反模糊线性空间的概念,并讨论了集合成为反模糊域与反模糊线性空间的几个充分必要条件.最后以模糊集合理论为基本工具给出反模糊域与反模糊线性空间的若干刻画和进一步的讨论.This paper is based on the theorems of the fuzzy linear spaces in the fuzzy algebra. The concept of anti-fuzzy groups and anti-fuzzy fields are given when L is a complete Lerbegue space, then we can get the definitions of anti-fuzzy fields and Anti-fuzzy linear spaces, and the necessity and sufficient condition of anti-fuzzy linear spaces are studied. Descriptions and discussions of anti-fuzzy linear spaces are given based on the fundamental theorems of fuzzy sets.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80