检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学信息科学与技术学院,成都610031
出 处:《电子与信息学报》2008年第11期2746-2749,共4页Journal of Electronics & Information Technology
摘 要:HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-SVM,并使用了样本缩减策略。实验表明,这种方法可以有效提高HSMC-SVM的收敛速度,其收敛速度已经超过了基于libsvm的组合多类支持向量机,完全可以用于分类类别多、样本数量大的分类场合。HSMC-SVM is a kind of high-speed multi-class SVM with direct mode, and it is appropriate for the situation having lots of categories. Because working set selection of SMO algorithm is based on experience, HSMC-SVM would converge slowly trained with SMO. For accelerating the convergence process of HSMC-SVM, a new approach of working set selection based on second order approximation is proposed. At the same time, shrinking strategy is used too. The numeric experiments show that these measures can speed up the convergence process of HSMC-SVM efficiently. The convergence process of HSMC-SVM is even shorter than these composed multi-class SVMs trained with libsvm. Hence, HSMV-SVM based on second order approximation is very appropriate for the situation that classification category is more and the number of training samples is large.
关 键 词:超球体多类支持向量机 SMO训练算法 工作集选择:二次逼近
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.0.207