检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《沈阳航空工业学院学报》2008年第5期88-90,共3页Journal of Shenyang Institute of Aeronautical Engineering
摘 要:主要研究了在均衡二分图G中哈密顿[k,k+1]因子的存在性。设G=(X,Y,E),|X|=|Y|=n2 4(k-2)-3,k 2且n 2,δ(G)k,若G中每一对不相邻的顶点u,v有m ax{dG(x),dG(x)}n4+2,则G有包含哈密顿圈C的[k,k+1]因子。在此基础上,进一步给出结论:二分图G=(X、Y、E),|X|=|Y|=n2≥4(k-2)且n≥2,δ(G)≥k,若G中每一对不相邻的顶点u,v有dG(v)≥n2+4,则G有包含哈密顿圈C的[k,k+1]因子。结论在很大程度上改进了已有的包含哈密顿圈的度条件,进一步完善了包含哈密顿圈的因子理论。In this paper, we mainly study the existence of Hamiltonian [ k, k + 1 ] - factor. Let be a balanced bipartite graph of order with k ≥ 2, minimum degree at least and |X|=|Y|=n/2≥4(k-2)-3,k≥2 for each pair of nonadjacent vertices u and v of G, max{dG(x),dG(x)}≥n/4+2, then for any given Hamihonian cycle C, G has a [ k, k + 1 ] - factor containing G. Based on this, we present another conclusion that Let k≥2 be an integer and G be a balanced bipartite graph of order n with minimum degree at least k and |X|=|Y|=n/2≥4(k-2)-3, n ≥6. If each pair of nonadjacent vertices u and v of G, dG(u)+dG(v)≥n/2+4, then for any given Hamihonian cycle C, G has a [ k, k + 1 ] - factor containing C. This conclusion has improved degree conditions in Hamihonian cycle which have been drawn at some context, and has further perfected fact theory with Hamihonian cycle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157