时滞偏微分方程系统的稳定性检验(英文)  被引量:3

Stability Test for Time-Delay Partial Differential Equation Systems

在线阅读下载全文

作  者:肖扬[1] KIM Kiseon 

机构地区:[1]北京交通大学信息科学研究所,北京100044 [2]光州理工学院信息与通信工程系

出  处:《应用科学学报》2008年第6期655-660,共6页Journal of Applied Sciences

基  金:Project supported by the Natural Science Foundation of China(No.60572093);Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20050004016);NSFC-KOSEF Joint Research Project and IITA Professorship Program of Gwangju Instiute of Science and Technology

摘  要:TDPDE系统的稳定性涉及到2D拟多项式,TDPDE系统的特征多项式为2D拟多项式,而其零点为一些连续的超曲面,不再是孤立的和可分离的.这导致检验TDPDE系统的稳定性非常困难.为解决上述问题,提出一种检验TDPDE系统渐近稳定性的方法,该方法通过检验TDPDE系统对应的2D特征多项式的Hurwitz稳定性来确定TDPDE系统的渐近稳定性.该文提出的定理建立了TDPDE系统的渐近稳定性与对应的2D特征多项式的Hurwitz稳定性关系,提供了2D特征多项式(2D拟多项式)的Hurwitz稳定性检验方法.由该文结果导出具有简单检验过程的2D拟多项式的Hurwitz-Schur稳定性数值检验算法,并用实例说明其应用.Stability of time-delay partial differential equations (TDPDE) systems involves 2D quasi-polynomials, while zeros of the characteristic polynomials (2D quasi-polynomials) of TDPDE systems are some continuous and hyper curved surfaces. Zeros are not isolated and separated, leading to difficulty in the stability test of TDPDE systems. To solve the problem, this paper proposes an approach to test asymptotic stability of TDPDE systems by a Hurwitz stability test of 2D characteristic polynomials of the systems. The proposed Theorems establish the relationship between the asymptotic stability of TDPDE systems and the Hurwitz stability test of 2D characteristic polynomials, and provide a test approach of the Hurwitz stability test of 2D characteristic polynomials (2D quasi-polynomials). Base on the results, a numerical algorithm with a simpler test procedure for Hurwitz-Scbur stability test of 2D quasi-polynomials is developed. An example illustrates the application of the proposed approach.

关 键 词:时滞偏微分方程系统 Hurwitz—Schur稳定性 2D拟多项式 检验算法 

分 类 号:TP11[自动化与计算机技术—控制理论与控制工程] N94[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象