Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa  被引量:3

Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa

在线阅读下载全文

作  者:ZHANG TingTing SONG YunZhi LIU YuDong GUO XingQi ZHU ChangXiang WEN FuJiang 

机构地区:[1]State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China

出  处:《Chinese Science Bulletin》2008年第23期3656-3665,共10页

基  金:the National Basic Research and Development Program of China (Grant No. 2007CB116208)

摘  要:The cDNA of AtPLDα (Arabidopsis thaliana Phospholipase Dα) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDα gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCl treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDα expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCl separately. The contents of chlorophylls and the activities of some anti-oxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialde-hyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDα gene can enhance the drought and salt tolerance in transgenic P. tomen-tosa plants.The cDNA of AtPLDa (Arabidopsis thaliana Phospholipase Da) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDa gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCI treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDa expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCI separately. The contents of chlorophylls and the activities of some anti- oxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialdehyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDa gene can enhance the drought and salt tolerance in transgenic P. tomentosa plants.

关 键 词:磷脂酶 转移基因组 过渡表达 抗氧化剂 

分 类 号:Q5[生物学—生物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象