Comparison between the Methods of Determining the Critical Stress for Initiation of Dynamic Recrystallization in 316 Stainless Steel  被引量:2

Comparison between the Methods of Determining the Critical Stress for Initiation of Dynamic Recrystallization in 316 Stainless Steel

在线阅读下载全文

作  者:M.Jafari A.Najafizadeh 

机构地区:[1]Department of Materials Engineering,Isfahan University of Technology,Isfahan,Iran

出  处:《Journal of Materials Science & Technology》2008年第6期840-844,共5页材料科学技术(英文版)

摘  要:Several methods have been proposed to calculate the critical stress for initiation of dynamic recrystallization (σc) on the basis of mathematical methods. One' of them is proposed by Stewart et al. in which this critical point appears as a distinct minimum in the (-dθ/dσ vs σ) through differentiating from θ vs σ. Another one is presented by Najafizadeh and Jonas by modifying the Poliak and Jonas method. According to this method, the strain hardening rate was plotted against flow stress, and the value of σc was attained numerically from the coefficients of the third-order equation that was the best fit from the experimental θ-σ data. Hot compression tests were used in the range of 1000 to 1100℃ with strain rates of 0.01^-1 s^-1 and strain of I on 316 stainless steel. The result shows that Najafizadeh and Jonas method is simpler than the previous one, and has a good agreement with microstructures. Furthermore, the value of normalized critical stress for this steel was obtained uc=σc/σp=0.92.Several methods have been proposed to calculate the critical stress for initiation of dynamic recrystallization (σc) on the basis of mathematical methods. One' of them is proposed by Stewart et al. in which this critical point appears as a distinct minimum in the (-dθ/dσ vs σ) through differentiating from θ vs σ. Another one is presented by Najafizadeh and Jonas by modifying the Poliak and Jonas method. According to this method, the strain hardening rate was plotted against flow stress, and the value of σc was attained numerically from the coefficients of the third-order equation that was the best fit from the experimental θ-σ data. Hot compression tests were used in the range of 1000 to 1100℃ with strain rates of 0.01^-1 s^-1 and strain of I on 316 stainless steel. The result shows that Najafizadeh and Jonas method is simpler than the previous one, and has a good agreement with microstructures. Furthermore, the value of normalized critical stress for this steel was obtained uc=σc/σp=0.92.

关 键 词:Dynamic recrystallization Critical stress Strain hardening rate 

分 类 号:TG142.71[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象