Constructive characterizations of(γp,γ)-and(γp,γpr)-trees  

Constructive characterizations of(γp,γ)-and(γp,γpr)-trees

在线阅读下载全文

作  者:CHEN Lei LU Chang-hong ZENG Zhen-bing 

机构地区:[1]Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai200062, China [2]Department of Mathematics, East China Normal University, Shanghai 200062, China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2008年第4期475-480,共6页高校应用数学学报(英文版)(B辑)

基  金:Supported in part by National Natural Science Foundation of China (60673048; 10471044);National Basic Research Program (2003CB318003);Shanghai Leading Academic Discipline Project (B407)

摘  要:Let G = (V, E) be a graph without isolated vertices. A set S lohtain in V is a domination set of G if every vertex in V - S is adjacent to a vertex in S, that is N[S] = V. The domination number of G, denoted by γ(G), is the minimum cardinality of a domination set of G. A set S lohtain in V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching. The paired-domination number, denoted by γpr(G), is defined to be the minimum cardinality of a paired-domination set S in G. A subset S lohtain in V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially, and (ii) if an observed vertex u has all neighbors observed except one neighbor v, then v is observed (by u). The power domination number, denoted by γp(G), is the minimum cardinality of a power domination set of G. In this paper, the constructive characterizations for trees with γp=γ and γpr = γp are provided respectively.Let G = (V, E) be a graph without isolated vertices. A set S lohtain in V is a domination set of G if every vertex in V - S is adjacent to a vertex in S, that is N[S] = V. The domination number of G, denoted by γ(G), is the minimum cardinality of a domination set of G. A set S lohtain in V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching. The paired-domination number, denoted by γpr(G), is defined to be the minimum cardinality of a paired-domination set S in G. A subset S lohtain in V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially, and (ii) if an observed vertex u has all neighbors observed except one neighbor v, then v is observed (by u). The power domination number, denoted by γp(G), is the minimum cardinality of a power domination set of G. In this paper, the constructive characterizations for trees with γp=γ and γpr = γp are provided respectively.

关 键 词:DOMINATION power domination PAIRED-DOMINATION TREE 

分 类 号:O23[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象