Frame rate up-conversion using multiresolution critical point filters with occlusion refinement  

Frame rate up-conversion using multiresolution critical point filters with occlusion refinement

在线阅读下载全文

作  者:Yi-xiong ZHANG Wei-dong WANG Peng LIU Qing-dong YAO 

机构地区:[1]Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

出  处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2008年第12期1621-1630,共10页浙江大学学报(英文版)A辑(应用物理与工程)

基  金:Project (No. 2004C21052) supported by the Key Program of the Science and Technology Commission Foundation of Zhejiang Province, China

摘  要:In this paper, multiresolution critical-point filters (CPFs) are employed to image matching for frame rate up-conversion (FRUC). By CPF matching, the dense motion field can be obtained for representing object motions accurately. However, the elastic motion model does not hold in the areas of occlusion, thus resulting in blur artifacts in the interpolated frame. To tackle this problem, we propose a new FRUC scheme using an occlusion refined CPF matching interpolation (ORCMI). In the proposed approach, the occlusion refinement is based on a bidirectional CPF mapping. And the intermediate frames are generated by the bidirectional interpolation for non-occlusion pixels combined with unidirectional projection for the occlusion pixels. Ex- perimental results show that ORCMI improves the visual quality of the interpolated frames, especially at the occlusion regions. Compared to the block matching based FRUC algorithm, ORCM1 can achieve 1-2 dB PSNR gain for standard video sequences.In this paper, multiresolution critical-point filters (CPFs) are employed to image matching for frame rate up-conversion (FRUC). By CPF matching, the dense motion field can be obtained for representing object motions accurately. However, the elastic motion model does not hold in the areas of occlusion, thus resulting in blur artifacts in the interpolated frame. To tackle this problem, we propose a new FRUC scheme using an occlusion refined CPF matching interpolation (ORCMI). In the proposed approach, the occlusion refinement is based on a bidirectional CPF mapping. And the intermediate frames are generated by the bidirectional interpolation for non-occlusion pixels combined with unidirectional projection for the occlusion pixels. Experimental results show that ORCMI improves the visual quality of the interpolated frames, especially at the occlusion regions. Compared to the block matching based FRUC algorithm, ORCMI can achieve 1~2 dB PSNR gain for standard video sequences.

关 键 词:Frame rate up-conversion Multiresolution critical-point filters Occlusion refinement 

分 类 号:TN919.8[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象