检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039
出 处:《计算机技术与发展》2008年第12期231-234,共4页Computer Technology and Development
基 金:国家自然科学基金(60273043);安徽大学研究生创新基金(20073053)
摘 要:分类问题,尤其是文本自动分类一直是机器学习与数据挖掘研究中的研究热点与核心技术,其中如朴素贝叶斯、KNN等近年来得到了广泛的关注和快速的发展。文中在统计学理论的基础上给出了一种基于支持向量机方法的文本分类算法,并设计出了相应的垃圾邮件过滤系统。实验证明与朴素贝叶斯方法相比,该算法极大地提高了分类准确率和查全率,具有应用推广的价值。Classification is one of the most important research fields in data mining and machine learning. In recent years, there have been extensive studies and rapid progresses in automatic text categorization. Proposes a SVM text categorization on the basis of statistic theory, and designs a corresponding spam email filtering system. Compared with the naive Bayes, the validity of this system is proved. At last some future directions of the research are given.
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222