数据缺失下学习贝叶斯网的一种混合启发方法  被引量:1

Hybrid Heuristic for Learning Bayesian Network with Missing Values

在线阅读下载全文

作  者:廖学清[1] 吕强[1,2] 

机构地区:[1]苏州大学计算机科学与技术学院,苏州215006 [2]江苏省计算机信息处理技术重点实验室,苏州215006

出  处:《计算机科学》2008年第12期163-166,共4页Computer Science

基  金:国家教育部博士点基金(20060285008);江苏省自然科学基金(BK2003030)资助

摘  要:建立了具有数据缺失训练集下学习贝叶斯网的一种混合启发方法:SGS-EM-PACOB算法。它基于打分-搜索方法,利用GS和EM数据补全策略分别得到学习所需要的统计因子,并将两者联合起来作为PACOB算法的启发因子。实验证明,SGS-EM-PACOB算法充分保留GS和EM两者的优点,促使算法能够平稳地收敛到理想结果。相对于只具有单一数据补全策略的算法,该算法不仅在度量数据拟合程度的Logloss值上保持稳定,而且在学习到的贝叶斯网络结构上也有改进。Presented an efficient hybrid heuristic SGS-EM-PACOB algorithm for learning Bayesian network with missing values. It is based on scoring and searching method by using GS and EM data completion policies to attain statistic information, which is essential in learning Bayesian network. SGS-EM-PACOB algorithm combines these two policies for PACOB, an excellent parallel ant colony heuristic for learning bayesian network with complete dataset. The experi- ments showed SGS-EM-PACOB algorithm fully out-performed both GS and EM, and made the algorithm converge to ideal results smoothly. Comparing with those algorithms having only one data completion policy, SGS-EM-PACOB algorithm not only achieves a stable Logloss value,which measures how well the dataset matches the learned network, but also makes improvements on the learned bayesian network structure.

关 键 词:学习贝叶斯网 数据补全策略 混合启发 

分 类 号:TP393[自动化与计算机技术—计算机应用技术] TP311.13[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象