检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]新疆大学数学与系统科学学院,新疆乌鲁木齐830046 [2]新疆工业高等专科学校,新疆乌鲁木齐830091
出 处:《运筹学学报》2008年第4期19-24,共6页Operations Research Transactions
基 金:supported by NSFC (No.10601044),XJEDU2006S05;Scientific Research Foundation for Young Scholar of Xinjiang University.
摘 要:不包含2K_2的图是指不包含一对独立边作为导出子图的图.Kriesell证明了所有4连通的无爪图的线图是哈密顿连通的.本文证明了如果图G不包含2K_2并且不同构与K_2,P_3和双星图,那么线图L(G)是哈密顿图,进一步应用由Ryjá(?)ek引入的闭包的概念,给出了直径不超过2的2连通无爪图是哈密顿图这个定理的新的证明方法.A graph is called 2K2-free if it does not contain an independent pair of edges as an induced subgraph. Kriesell proved that all 4-connected line graphs of claw-free graph are Hamiltonian-connected. Motivated from this, in this note, we show that if G is 2K2-free and is not isomorphic to K2, P3 or a double star, then the line graph L(G) is Hamiltonian. Moreover, by applying the closure concept of claw-free graphs introduced by Ryjacek , we provide another proof for a theorem, obtained by Gould and independently by Ainouche et al., which says that every 2-connected claw-free graph of diameter at most 2 is Hamiltonian.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170