Large-scale amplitude liquid sloshing in container under pitching excitation  被引量:3

Large-scale amplitude liquid sloshing in container under pitching excitation

在线阅读下载全文

作  者:YUE BaoZeng 

机构地区:[1]Department of Mechanics, School of Science, Beijing Institute of Technology, Beijing 100081, China

出  处:《Chinese Science Bulletin》2008年第24期3816-3823,共8页

基  金:Supported by the National Natural Science Foundation of China (Grant Nos.10572022,10772022)

摘  要:Large-scale amplitude liquid sloshing in container under pitching excitation is numerically studied in this paper.Firstly,the kinematics of the ALE description is introduced and the fluid dynamics equations are revised in the ALE form.Secondly,the boundary condition about free-surface tension is represented in the form of weak integration that can be computed by the differential geometry method derived in the present paper and the normal vector on free surface is calculated using accurate formulas presented in this paper.Then the numerical discretized equations of fractional step finite element method are developed by Galerkin weighted residual method.Furthermore,the numerical simulation of large-scale amplitude sloshing of the liquid both in rectangular container and cylindrical container is carried out.The computed time evolution of the wave height,and free surface profiles at different time are obtained.Comparisons among the present numerical results with other published numerical results and experimental data confirm the effectiveness and validity of the method developed in this paper.Large-scale amplitude liquid sloshing in container under pitching excitation is numerically studied in this paper. Firstly, the kinematics of the ALE description is introduced and the fluid dynamics equations are revised in the ALE form. Secondly, the boundary condition about free-surface tension is represented in the form of weak integration that can be computed by the differential geometry method derived in the present paper and the normal vector on free surface is calculated using accurate formulas presented in this paper. Then the numerical discretized equations of fractional step finite element method are developed by Galerkin weighted residual method. Furthermore, the numerical simulation of large-scale amplitude sloshing of the liquid both in rectangular container and cylindrical container is carried out. The computed time evolution of the wave height, and free surface profiles at different time are obtained. Comparisons among the present numerical results with other published numerical results and experimental data confirm the effectiveness and validity of the method developed in this paper.

关 键 词:纵摇激发 数字模拟 液体晃动 自由面张力 

分 类 号:O3[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象