检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]九江学院电子工程学院
出 处:《通信技术》2008年第12期46-49,共4页Communications Technology
基 金:国家自然科学基金(NO.60772037);江西省卫生厅科技计划项目(No.20072048)
摘 要:在alpha稳定分布噪声下,传统的谐波信号的频谱估计方法会失去其韧性。本文简要分析了分数阶共变矩阵的结构,在此基础上提出了基于分数阶统计量的谐波信号的频谱估计新方法:基于分数阶共变的Pisarenko谐波分解(FOC-PHD)算法和多信号分类法(FOC-MUSIC)算法。这种方法将信号频谱估计的范围从二阶矩扩大到p阶矩(1<p<α≤2)。通过对给定的alpha稳定分布噪声中正弦信号的估计与分辨进行仿真,详细比较了传统的谐波信号频谱估计和FOC-PHD、FOC-MUSIC频谱估计算法的性能,仿真结果表明,本文提出的方法明显优于传统的频谱估计算法,具有良好的韧性。Under the alpha stable distribution noise , the convential harmonic signal spectrum estimate algorithm would lose its capability. This paper briefly analyzes the frame of fractional order covariation, proposes some new methods for frequency estimation under alpha-stable noise conditions: Fractional Order Covariation Pisarenko harmonic decomposition (FOC-PHD) and Fractional Order Covariation Multiple Signal Classification (FOC-MUSIC). This method extends the range from 2 to p (l〈p〈a~_2). By estimating the sinusoidal signals embedded in the a stable noise, the convential harmonic signal spectrum estimate algorithm and FOC-PHD, FOC-MUSIC algorithm are compared in detail. Simulation results show that the new methods are robust, and their resolution capability and probability of resolution are better than conventional algorithm.
关 键 词:ALPHA稳定分布 频谱估计 分数阶共变 Pisarenko谐波分解 多信号分类
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117