带有给定切线多边形的四次C-曲线  被引量:2

Quartic C-curves with given tangent polygons

在线阅读下载全文

作  者:王燕[1] 檀结庆[1] 

机构地区:[1]合肥工业大学数学系,安徽合肥230009

出  处:《合肥工业大学学报(自然科学版)》2008年第12期2053-2058,共6页Journal of Hefei University of Technology:Natural Science

基  金:国家自然科学基金资助项目(60773043;60473114);教育部博士点基金资助项目(20070359014);安徽省自然科学基金资助项目(070416273X);安徽省教育厅科技创新团队基金资助项目(2005TD03)

摘  要:四次C-曲线是由{sint,cost,t2,t,1}生成的曲线,包括四次C-Bézier曲线和四次C-B样条曲线,具有很多类似于Bézier曲线和B样条曲线的优良性质。文章讨论了与给定切线多边形相切的分段四次C-Bézier曲线和四次C-B样条闭曲线和开曲线;所构造的C-Bézier曲线是C1连续的,且对切线多边形是保形的;四次C-B样条闭曲线和开曲线是C3连续的,且对切线多边形也是保形的;所构造曲线段的控制点由切线多边形的顶点直接计算产生。最后以实例表明,本文的方法是有效的。Quartic C-curves, including quartic C-Bézier curves and quartic C-B spline curves, are yielded by the basis { sin t, cos t,t^2,t, 1 } . They have a lot of good properties which Bézier curves and B spline curves possess. This paper presents an approach of constructing planar piecewise quartic C-Bézier curves and quartic C-B spline curves with all edges tangent to a given control polygon. The C-Bézier curve segments are joined together with C^1 continuity and the quartic C-B spline closed curves and open curves are Ca continuous. All curves are shape preserving to their tangent polygons. All control points of the curve segments can be calculated simply by the vertices of the given tangent polygon. Finally some numerical examples illustrate that the method given in this paper is effective.

关 键 词:四次C-Bézier曲线 四次C-B样条曲线 切线多边形 保形曲线 

分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象