Effects of Different Carbon Sources and NaBr-KCl on Synthesis of Ti(C,N)  

Effects of Different Carbon Sources and NaBr-KCl on Synthesis of Ti(C,N)

在线阅读下载全文

作  者:CHEN Xilai LI Yuanbing ZHANG Renhua LI Yawei LI Jun 

机构地区:[1]The Hubei Province Key Lab of Ceramics and Refractories,Wuhan University of Science & Technology, Wuhan 430081, China [2]Hankou Electric Power Equipment Works, Wuhan 430035, China

出  处:《China's Refractories》2008年第4期5-10,共6页中国耐火材料(英文版)

基  金:the Natural Science Foundation of Hubei Province (2007ABA372) and the New Century Excellent Talents in University (NCET- 06-0676).

摘  要:Ti( C, N) was synthesized with the starting materials of 76. 9% titania white and 23. 1% carbon black (graphite or activated carbon ), or 40% titania white and 60% amylum, with or without 10% NaBr - KCl, dry moulding and carbon embedded firing at i 300 ℃ and 1 400 ℃ for 3 h, respectively. Phase composition and microstructure of the synthesized Ti (C, N) were analyzed by XRD, SEM and EPMA. Effects of different carbon sources and NaBr-KCl on the synthesis of Ti( C, N) were investigated. The results show that: (1) Ti (C, N) can be synthesized by using carbon black, graphite, activated carbon or amylum as carbon source separately; (2) Additive NaBr - KCl is more favorable for accelerating the carbothermal reduction reaction using carbon black or amylum as carbon source; (3) In the presence of NaBr - KCl, particle size of the synthesized Ti( C, N) is 5 -8μm using carbon black as carbon source fired at 1 300 ℃ for 3 h, while that is only 1 - 3 μm using graphite, activated carbon or amylum fired at 1 400 ℃ for 3 h.Ti( C, N) was synthesized with the starting materials of 76. 9% titania white and 23. 1% carbon black (graphite or activated carbon ), or 40% titania white and 60% amylum, with or without 10% NaBr - KCl, dry moulding and carbon embedded firing at i 300 ℃ and 1 400 ℃ for 3 h, respectively. Phase composition and microstructure of the synthesized Ti (C, N) were analyzed by XRD, SEM and EPMA. Effects of different carbon sources and NaBr-KCl on the synthesis of Ti( C, N) were investigated. The results show that: (1) Ti (C, N) can be synthesized by using carbon black, graphite, activated carbon or amylum as carbon source separately; (2) Additive NaBr - KCl is more favorable for accelerating the carbothermal reduction reaction using carbon black or amylum as carbon source; (3) In the presence of NaBr - KCl, particle size of the synthesized Ti( C, N) is 5 -8μm using carbon black as carbon source fired at 1 300 ℃ for 3 h, while that is only 1 - 3 μm using graphite, activated carbon or amylum fired at 1 400 ℃ for 3 h.

关 键 词:Titanium carbonitride Sodium bromide -potassium chloride molten salt Carbon source Carbo-thermal reduction method 

分 类 号:TQ9[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象