基于生命旋回-权马尔可夫的径流预测模型  被引量:1

A prediction model for river annual runoff based on life cycle-weighted Markov

在线阅读下载全文

作  者:张建兴[1,2] 马孝义[1] 赵文举[1] 高文强[1] 王波雷[1] 

机构地区:[1]西北农林科技大学旱区农业水土工程教育部重点实验室,陕西杨凌712100 [2]山西省晋城市水利局,山西晋城048000

出  处:《武汉大学学报(工学版)》2008年第6期11-15,共5页Engineering Journal of Wuhan University

基  金:国家自然科学基金资助项目(编号:50479052);国家科技支撑计划课题(编号:2006BAD11B04);西北农林科技大学青年学术骨干计划资助课题

摘  要:针对生命旋回预测模型不能反映河川径流周期性和波动性变化的特点,将其与权马尔可夫链结合,提出了一种精度较高的预报模型——生命旋回-权马尔可夫链组合模型.该模型用生命旋回模型预报河川径流的趋势项变化,由权马尔可夫链对径流残差序列进行修正,进行预测时采用等维信息方法处理,在此基础上对黄河龙门水文站径流进行预测,拟合精度为86.97%,合格率为86.78%,表明该模型可以用于径流预测.此外,对求解生命旋回模型的方法作出了改进,经研究表明,该方法实用可行.The river annual runoff prediction is very important to hydraulic and hydropower engineering management; and it is also a complex problem. The life cycle model is a new long term prediction model for river runoff, which requires less data, simple calculation. However, due to the physical mechanism, the prediction results of the life cycle model can't reflect the fluctuate and random characteristics of the river annual runoff; and it can not meet required precision for hydraulic and hydropower engineering management, which usually need one year prediction period. Aiming at these problems, the life cycleweighted Markov combination prediction model is put forward, in which the life cycle model is used to predict the tendency item of the river annual runoff; and the weighted Markov model is also involved to predict the random item. The annual runoff at Longmen Station of the Yellow River from 1957 to 2001 is predicted with the new combination model; and the annual runoff from 2002 to 2005 is tested. The resuits show that: the average precision of the combination model is 86.97%; 86.78% prediction results is qualified. In addition, this paper improved the seeking method for parameters of the life cycle model, and it is feasible.

关 键 词:径流预测 生命旋回模型 权马尔可夫链 黄河 龙门站 

分 类 号:TV121.4[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象