Adaptive blind separation of underdetermined mixtures based on sparse component analysis  被引量:3

Adaptive blind separation of underdetermined mixtures based on sparse component analysis

在线阅读下载全文

作  者:YANG ZuYuan HE ZhaoShui XIE ShengLi FU YuLi 

机构地区:[1]School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China

出  处:《Science in China(Series F)》2008年第4期381-393,共13页中国科学(F辑英文版)

基  金:the National Natural Science Foundation of China (Grant Nos. 60505005, 60674033, 60774094 and U0635001);Natural Science Fund of Guangdong Province, China (Grant Nos. 05103553 and 05006508);Postdoctoral Science Foundation for Innovation from South China University of Technology;China Postdoctoral Science Foundation (Grant No. 20070410237)

摘  要:The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult to use in some challenging cases, such as underdetermined BSS or blind separation of dependent sources. Recently, sparse component analysis (SCA) has attained much attention because it is theoretically available for underdetermined BSS and even for blind dependent source separation sometimes. However, SCA has not been developed very sufficiently. Up to now, there are only few existing algorithms and they are also not perfect as well in practice. For example, although Lewicki-Sejnowski's natural gradient for SCA is superior to K-mean clustering, it is just an approximation without rigorously theoretical basis. To overcome these problems, a new natural gradient formula is proposed in this paper. This formula is derived directly from the cost function of SCA through matrix theory. Mathematically, it is more rigorous. In addition, a new and robust adaptive BSS algorithm is developed based on the new natural gradient. Simulations illustrate that this natural gradient formula is more robust and reliable than Lewicki-Sejnowski's gradient.The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult to use in some challenging cases, such as underdetermined BSS or blind separation of dependent sources. Recently, sparse component analysis (SCA) has attained much attention because it is theoretically available for underdetermined BSS and even for blind dependent source separation sometimes. However, SCA has not been developed very sufficiently. Up to now, there are only few existing algorithms and they are also not perfect as well in practice. For example, although Lewicki-Sejnowski's natural gradient for SCA is superior to K-mean clustering, it is just an approximation without rigorously theoretical basis. To overcome these problems, a new natural gradient formula is proposed in this paper. This formula is derived directly from the cost function of SCA through matrix theory. Mathematically, it is more rigorous. In addition, a new and robust adaptive BSS algorithm is developed based on the new natural gradient. Simulations illustrate that this natural gradient formula is more robust and reliable than Lewicki-Sejnowski's gradient.

关 键 词:underdetermined mixtures blind source separation (BSS) dependent sources sparse component analysis (SCA) sparse representation independent component analysis (ICA) natural gradient 

分 类 号:TP31[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象