检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李娜[1]
机构地区:[1]南开大学哲学系
出 处:《逻辑学研究》2008年第3期41-50,共10页Studies in Logic
基 金:国家社会科学基金项目(04BZX047)
摘 要:1989年A.Blass和A.Scedrov构造了含有原子的模型V(A)(A是所有原子的集合,参见文献)并证明了V(A)是ZFA(ZFA=ZF+A,公理A断言:存在所有原子的集合)的模型。由于集合论的公理系统GB是ZF的一个保守扩充,因此,集合论的公理系统GBA(GBA=GB+A,其中GB是集合论的含有集合和类的哥德尔-贝奈斯公理系统)也是ZFA的一个保守扩充。本文的目的是在集合论的含有原子和集合的公理系统ZFA的自然模型V(A)的基础上,为集合论的含有原子、集合和类的公理系统GBA建立模型。因此,我们首先介绍了A.Blass和A.Scedrov的含有原子的模型V(A);第二,给出并证明V(A)具有的一些基本性质;第三,扩充了集合论的公理系统ZFA的形式语言(?)_(ZFA)并定义含有原子和集合的类C:第四,构造含有原子、集合和类的模型∑(A),称它为自然模型,最后,证明了∑(A)是GBA的模型。In 1989, A. Blass and A. Scedrov constructed the model V(A) with atoms (where A is a set of all atoms, see [1]), namely a natural model. They proved that V(A) is a model of the axiom system ZFA in set theory (where ZFA = ZF + A, and axiom A claims: There is a set of all atoms.). Because the axiom system GB (GB is Godel- Beruays' axiom system in set theory) is a conservative extension of the axiom system ZF in set theory, the axiom system GBA (where GBA = GB + A) is also a conservative extension of the axiom system ZFA. The purpose of this paper is to construct a natural model ∑(A) (A is a set of all atoms) with atoms, sets and classes for Godel-Bemays' axiom system on the basis of the model V(A) of the axiom system ZFA in set theory. We first introduce A. Blass & A. Scedrov's model V(A) with atoms. Second, we prove some important properties of V(A). Third, we expand the formal language LZFA of the axiom system ZFA in set theory, and define the class C including atoms and sets. Fourth, we construct the model ∑(A) including atoms, sets and classes. We conclude with a proof that the model ∑(A) is a model of Godel-Bemays' axiom system GBA with atoms. We call that model ∑(A) a natural model of GBA.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249