Ligand-controlled First Hyperpolarizabilities of a Series of Tetrahedral Iridium Clusters Ir_4(CO)_9L: a TDDFT Study  

Ligand-controlled First Hyperpolarizabilities of a Series of Tetrahedral Iridium Clusters Ir_4(CO)_9L: a TDDFT Study

在线阅读下载全文

作  者:李福君 洒荣建 吴克琛 

机构地区:[1]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences

出  处:《Chinese Journal of Structural Chemistry》2009年第1期106-112,共7页结构化学(英文)

基  金:Supported by the National Natural Science Foundation of China (20573114);the MOST (2006DFA43020);Natural Science Foundation of Fujian Province (2006F3133 and 13071062)

摘  要:A series of tetrahedral iridium carbonyl clusters coordinated by systematically varied series of ligands have been studied by TDDFT method focusing on their electronic and non- linear optical properties. The clusters of Ir4(CO)12 (1), Ir4(μ-CO)3(CO)9 (2), Ir4(μ-L)(CO)10 (L = dppm 3, dppe 4, (Ph2P)2CHMe 5, Ph2P(CH2)3PPh2 6) and Ir4(CO)10(phen) (phen = 1,10-phen- anthroline) (7) exhibit the first static hyperpolarizabilities of medium magnitude (βtot-10×10^-30 esu). The second order nonlinear optical response of the seven clusters increase from 0 to 23 ×10^-30 esu; the high symmetric cluster Ir4(CO)12 debases its symmetry and presents the second order nonlinear optical behavior as the coordination style of some carbonyls changes to bridge style, and then the response increases regularly with the systematical variation of the ligands. The origination of the first hyperpolarizability is discussed by the expanded orbital decomposition scheme. The results suggest the d-d electron transition from the apical iridium atom to the other three Ir atoms inside the metal skeleton, and d-πelectron transitions from metals to carbonyls are responsible for the first hyperpolarizabilities. Particularly, for cluster 7, the charge transfer from d orbitals of iridium to π* orbirals of phenanthroline originates the first hyperpolarizabilities.A series of tetrahedral iridium carbonyl clusters coordinated by systematically varied series of ligands have been studied by TDDFT method focusing on their electronic and non- linear optical properties. The clusters of Ir4(CO)12 (1), Ir4(μ-CO)3(CO)9 (2), Ir4(μ-L)(CO)10 (L = dppm 3, dppe 4, (Ph2P)2CHMe 5, Ph2P(CH2)3PPh2 6) and Ir4(CO)10(phen) (phen = 1,10-phen- anthroline) (7) exhibit the first static hyperpolarizabilities of medium magnitude (βtot-10×10^-30 esu). The second order nonlinear optical response of the seven clusters increase from 0 to 23 ×10^-30 esu; the high symmetric cluster Ir4(CO)12 debases its symmetry and presents the second order nonlinear optical behavior as the coordination style of some carbonyls changes to bridge style, and then the response increases regularly with the systematical variation of the ligands. The origination of the first hyperpolarizability is discussed by the expanded orbital decomposition scheme. The results suggest the d-d electron transition from the apical iridium atom to the other three Ir atoms inside the metal skeleton, and d-πelectron transitions from metals to carbonyls are responsible for the first hyperpolarizabilities. Particularly, for cluster 7, the charge transfer from d orbitals of iridium to π* orbirals of phenanthroline originates the first hyperpolarizabilities.

关 键 词:TDDFT UV-vis spectrum iridium duster nonlinear optical 

分 类 号:O641[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象