The Separation and N-Compactness of Induced R(L)-Fuzzy Topological Spaces  

The Separation and N-Compactness of Induced R(L)-Fuzzy Topological Spaces

在线阅读下载全文

作  者:LIU Zhi Bin 

机构地区:[1]College of Mathematics and Physics, Zhejiang Normal University, Zhejiang 321004, China

出  处:《Journal of Mathematical Research and Exposition》2009年第1期106-112,共7页数学研究与评论(英文版)

基  金:Foundation item: the National Natural Science Foundation of China (No. 10471083); the Natural Science Foundation of Zhejiang Education Committee (No. 20060500).

摘  要:In this paper, we prove that (L^X,5) is T0,T1, T2, regular (T3), normal (T4) and completely regular spaces if and only if (R(L)^X, ω(δ)) is T0, T1, T2, regular (T3), normal (T4) and completely regular spaces, respectively, and (L^X,δ) is N-compact if and only if (R(L)^X, ω(δ)) is N-compact.In this paper, we prove that (L^X,5) is T0,T1, T2, regular (T3), normal (T4) and completely regular spaces if and only if (R(L)^X, ω(δ)) is T0, T1, T2, regular (T3), normal (T4) and completely regular spaces, respectively, and (L^X,δ) is N-compact if and only if (R(L)^X, ω(δ)) is N-compact.

关 键 词:Induced R(L)-fuzzy topological spaces SEPARATION N-compactness. 

分 类 号:O153.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象