检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学信息科学与工程学院,浙江省杭州市310027
出 处:《电力系统自动化》2009年第1期36-40,69,共6页Automation of Electric Power Systems
摘 要:针对标准粒子群优化(PSO)算法易陷入局部最优解的缺点,提出了闭环PSO(CLPSO)算法。算法引入经典控制理论中的反馈机制和闭环控制概念,将每个粒子视为被控对象,根据每一步得到的适应值通过PID控制器动态调整惯性权重,以满足搜索过程中粒子时时变化的需求。该策略极大地保证了粒子多样性,提高了算法的全局搜索能力。将CLPSO算法应用到机组组合问题中,同时结合新的策略以降低问题维数和保证寻优过程中粒子的可行性。仿真结果验证了所提出的算法在解决机组组合问题上的有效性。A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closedloop system based on control theories. At each step, a PID controller is used to calculate an updated inertia weight for each particle in the swarm from its last fitness. With this modification, the limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have sufficient diversity. In solving unit commitment (UC) problems with the CLPSO algorithm proposed, novel strategies are adopted to reduce the problem dimensions and guarantee particle feasibility. Simulation results demonstrate the superiority of the method proposed in solving UC problems.
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.34.228