检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Biao LIANG Xi-shuang LIU Feng-min ZHONG Tie-gang ZHAO Chun LU Ge-yu QUAN Bao-fu
出 处:《Chemical Research in Chinese Universities》2009年第1期13-16,共4页高等学校化学研究(英文版)
基 金:Supported by the Major International Collaborative Project of the National Natural Science Foundation of China(No. 60574096);the Distinguished Young Scholars(No.60625301).
摘 要:Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis methods of X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and transmission electron microscopy(TEM) as well as conductivity measurement. Compared with those sintered at other temperatures, the NASICON material sintered at 900 ℃ had the best crystalline structure and higher conductivity.Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis methods of X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and transmission electron microscopy(TEM) as well as conductivity measurement. Compared with those sintered at other temperatures, the NASICON material sintered at 900 ℃ had the best crystalline structure and higher conductivity.
关 键 词:Na superionic conductor(NASICON) NANOPARTICLES Sol-gel method
分 类 号:TN304.1[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.192