Tiny pollutant emissions of a dimethyl ether fuelled engine  

Tiny pollutant emissions of a dimethyl ether fuelled engine

在线阅读下载全文

作  者:郎静 张煜盛 

机构地区:[1]Faculty of Energy and Power Engineering, Huazhong University of Science and Technology

出  处:《Journal of Chongqing University》2008年第4期284-290,共7页重庆大学学报(英文版)

基  金:Funded by the Major State Basic Research Development Program of China (No. 2001CB209207);National Natural Science Foundation of China (No. 50676036 and No. 20777023)

摘  要:Emissions of dimethyl ether(DME) fuelled engines were investigated by orthogonal experiments on a ZS195 diesel engine.The study mainly focused on the tiny pollutant emissions of formaldehyde(CH2O),methyl formate(CH3OCHO) and formic acid(HCOOH).The presence of CH2O,CH3OCHO and HCOOH are proved in the exhaust by gas chromatograph and Fourier transform infrared spectroscopy.The analysis of variance results indicate that the fuel delivery advance angle is the most important factor for CH2O emission.The fuel delivery advance angle and the interaction of injection pressure and nozzle diameter are considerable factors for unburned hydrocarbon(UHC) emission.The mechanism forming tiny pollutants,primarily through CH2O formation,is suggested to be similar to the mechanism forming UHC by DME partial oxidation existing in crevices and boundary zones,and is verified via DME combustion simulation of a multizone chemical kinetic model.Emissions of dimethyl ether (DME) fuelled engines were investigated by orthogonal experiments on a ZS195 diesel engine. The study mainly focused on the tiny pollutant emissions of formaldehyde (CH2O), methyl formate (CH3OCHO) and formic acid (HCOOH). The presence of CH2O, CH3OCHO and HCOOH are proved in the exhaust by gas chromatograph and Fourier transform infrared spectroscopy. The analysis of variance results indicate that the fuel delivery advance angle is the most important factor for CH2O emission. The fuel delivery advance angle and the interaction of injection pressure and nozzle diameter are considerable factors for unburned hydrocarbon (UHC) emission. The mechanism forming tiny pollutants, primarily through CH2O formation, is suggested to be similar to the mechanism forming UHC by DME partial oxidation existing in crevices and boundary zones, and is verified via DME combustion simulation of a multizone chemical kinetic model.

关 键 词:dimethyl ether EMISSION FORMALDEHYDE methyl formate formic acid 

分 类 号:TK46[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象