Time Sequential and Phase-resolved Measurement and Analysis of Corona Discharge in Air and Streamer Discharge in Insulating Liquid  被引量:2

Time Sequential and Phase-resolved Measurement and Analysis of Corona Discharge in Air and Streamer Discharge in Insulating Liquid

在线阅读下载全文

作  者:Suwarno 

机构地区:[1]School of Electrical Engineering and Informatics Institut Teknologi Bandung J1, Ganesha 10 Bandung Indonesia

出  处:《高电压技术》2008年第12期2583-2588,共6页High Voltage Engineering

摘  要:Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are all used.During operation of a high voltage equipment high electric stress may occur.Under extreme condition failure of the insulation may take place.Excessive electric field in air may cause corona discharges while in liquid insulation discharges may take place in the form of streamer.This paper reports experimental results on the corona and streamer discharges in air and silicone oil.The discharges were artificially generated around a needle tip in a needle-plane electrode system with gap length of 4 mm under sinusoidal and triangular voltages.The needle was made of steel with tip radius of 3 μm and curvature angle of 30°.The needle was made by Ogura Jewelry.The discharge pulses were measured using personal-computer based partial discharge(PD)measurement system with sensitivity of better than 0.5 pC.The system is able to measure discharge in time sequential.Phase-resolved analysis of the discharges was done to interpret the physical processes behind the discharges.The experimental results showed that corona discharges took place at negative half cycles.The discharges were concentrated around 270° of phase angle of applied voltage.The discharge magnitude and discharge number of corona clearly dependent on the instantaneous of applied voltage.These were strongly supported by the application of triangular voltage.Streamer discharges occurred at both positive and negative half cycles.The discharges pulses concentrated around the peak of applied voltage at phase angle of 90° and 270°.Experimental results under sinusoidal and triangular voltages revealed that streamer discharge magnitude as well as probability of occurrence was strongly dependent on the instantaneous applied voltage.Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are all used.During operation of a high voltage equipment high electric stress may occur.Under extreme condition failure of the insulation may take place.Excessive electric field in air may cause corona discharges while in liquid insulation discharges may take place in the form of streamer.This paper reports experimental results on the corona and streamer discharges in air and silicone oil.The discharges were artificially generated around a needle tip in a needle-plane electrode system with gap length of 4 mm under sinusoidal and triangular voltages.The needle was made of steel with tip radius of 3 μm and curvature angle of 30°.The needle was made by Ogura Jewelry.The discharge pulses were measured using personal-computer based partial discharge(PD)measurement system with sensitivity of better than 0.5 pC.The system is able to measure discharge in time sequential.Phase-resolved analysis of the discharges was done to interpret the physical processes behind the discharges.The experimental results showed that corona discharges took place at negative half cycles.The discharges were concentrated around 270° of phase angle of applied voltage.The discharge magnitude and discharge number of corona clearly dependent on the instantaneous of applied voltage.These were strongly supported by the application of triangular voltage.Streamer discharges occurred at both positive and negative half cycles.The discharges pulses concentrated around the peak of applied voltage at phase angle of 90° and 270°.Experimental results under sinusoidal and triangular voltages revealed that streamer discharge magnitude as well as probability of occurrence was strongly dependent on the instantaneous applied voltage.

关 键 词:空气 电晕放电 绝缘液体 流注放电 测量 

分 类 号:TM851[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象