检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海工程技术大学
出 处:《机械设计》1990年第3期29-31,共3页Journal of Machine Design
摘 要:本文首先对轴压薄壁圆筒作出简单的力及其变形分析。然后从微单元体静力平衡,推导出关于筒壁径向位移的微分方程。应用圣维南原理以及力边界条件,确定求解微分方程中的4个积分常数。于是我们得出筒壁径向位移的挠度方程。再利用出现在挠度方程中的不定型式,我们可以找出计算临界力的公式。最后对这一算式的实际可用性作了说明。This paper makes simple force and its deformation analyses for the thin walled cylinder under axial compression at first. Then from static equilibrium of a differential element, the differential equation for the radial displacement of cylindrical wall are derived out. By applying Saint-Yehant's principle force boundary conditions, four integration constants in solving differential equation are determined. Hence, we arrive at the deflection equation for the redial displacement of cylindrical wall. Further, by making use of indetermined form appearing in the deflection equation, we can find out the formula for calculating the critical force. Finally, the practical adaptability for this calculating formula is explained. Fig3Tab1 Ref2
分 类 号:TH133[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28