检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李志强[1] 胡笳[1] 祝丽芳[1] 罗应立[1]
机构地区:[1]华北电力大学电气与电子工程学院,北京102206
出 处:《电工技术学报》2008年第12期35-41,共7页Transactions of China Electrotechnical Society
基 金:国家自然科学基金资助项目(50277011)
摘 要:基于有限元方法的发电机非线性研究中,存在着大量涉及端点量迭代的计算,因而迭代算法的收敛性问题就显得至关重要。由于端点量对迭代量难以求导,以往文献广泛采用线性端点迭代法,然而该法在大功角运行工况下收敛性较差。为此,本文采用微商代替微分的数值方法形成牛拉法迭代中所需的雅克比矩阵元素,从而成功实现了牛拉法在端点量迭代中的应用。计算实例表明,改进的端点量迭代算法显著地改善了大功角运行工况下迭代的收敛性,是一种高效实用的计算方法。Because there is a great deal of computation concerning terminal quantity iteration when nonlinear characteristics of generator is researched with the Finite Element Method, the convergence of iterative algorithms is critical. Since there is difficulty of derivation to iteration variables for terminal quantity, linear terminal quantity iteration method was widely used in previous literature. However, this method has poor convergence under great power angle operation conditions. Therefore, a numerical method which uses derivative instead of differential to form Jacobia matrix elements is presented in this paper, and Newton-Raphson method thus could be applied to terminal quantity iteration successfully. Example shows that the improved iteration of terminal quantity method is a highly efficient and practical method, which significantly improves convergence under great power angle conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117