检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Faculty of Mathematics and Computer Science,Hubei University [2]College of Computer Science and Technology,Huazhong University of Science and Technology
出 处:《Journal of Harbin Institute of Technology(New Series)》2008年第6期856-861,共6页哈尔滨工业大学学报(英文版)
基 金:Sponsored by the National High Technology Research and Development Program of China (863 Program)(Grant No.[2005]555)
摘 要:To facilitate high-dimensional KNN queries,based on techniques of approximate vector presentation and one-dimensional transformation,an optimal index is proposed,namely Bit-Code based iDistance(BC-iDistance).To overcome the defect of much information loss for iDistance in one-dimensional transformation,the BC-iDistance adopts a novel representation of compressing a d-dimensional vector into a two-dimensional vector,and employs the concepts of bit code and one-dimensional distance to reflect the location and similarity of the data point relative to the corresponding reference point respectively.By employing the classical B+tree,this representation realizes a two-level pruning process and facilitates the use of a single index structure to further speed up the processing.Experimental evaluations using synthetic data and real data demonstrate that the BC-iDistance outperforms the iDistance and sequential scan for KNN search in high-dimensional spaces.To facilitate high-dimensional KNN queries, based on techniques of approximate vector presentation and one-dimensional transformation, an optimal index is proposed, namely Bit-Code based iDistance ( BC-iDistance). To overcome the defect of much information loss for iDistance in one-dimensional transformation, the BC-iDistance adopts a novel representation of compressing a d-dimensional vector into a two-dimensional vector, and employs the concepts of bit code and one-dimensional distance to reflect the location and similarity of the data point relative to the corresponding reference point respectively. By employing the classical B + tree, this representation realizes a two-level pruning process and facilitates the use of a single index structure to further speed up the processing. Experimental evaluations using synthetic data and real data demonstrate that the BC- iDistance outperforms the iDistance and sequential scan for KNN search in high-dimensional spaces.
关 键 词:high-dimensional index KNN search bit code approximate vector
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158