小波变换和数学形态学在电力扰动信号消噪中的应用  被引量:12

Wavelet transform and mathematical morphology’s application in power disturbance signal denosing

在线阅读下载全文

作  者:王丽霞[1] 何正友[1] 赵静[1] 张海平[1] 

机构地区:[1]西南交通大学电气工程学院,四川成都610031

出  处:《电力系统保护与控制》2008年第24期30-35,共6页Power System Protection and Control

基  金:国家自然科学基金项目(50407009);四川省杰出青年基金项目(No06ZQ026-012);教育部优秀新世纪人才支持计划项目(NCET-06-0799)~~

摘  要:基于小波变换和数学形态学的信号消噪方法都已被充分证明是行之有效的,但两种方法应用于电力扰动信号这一特殊对象的消噪是否能够适应良好,根据不同的信号和精度要求如何选择不同的消噪方法,成为一个很重要的问题。基于此,建立了重构因子用以评价算法对信号的重构能力,并对几种典型电力扰动信号进行了分析,通过计算其重构因子,讨论了两种算法对不同信号的适应性。通过仿真分析,得出对于无暂态脉冲或高频振荡扰动的信号,两种方法都是有效的,可根据计算速度和精度的不同要求予以选择;对于含暂态脉冲和振荡扰动的信号,基于小波变换的消噪效果明显优于基于数学形态学的消噪方法。Denoising based on wavelet transform and mathematical morphology have been proven to be effective, but whether they can work well when used in power disturbance signal denoising and how to choose the algorithm according to different signals and different accuracy requirements becomes a very important issue. Emodeling factor was established for evaluating the the ability of algorithm in reconstructing signal. Through analyzing the simulation results of several typical power disturbance signals, it calculates the remodeling factor then discusses the adaptability of different denosing algorithms used in different signals' denosing. The result of the comp uter simulation indicates that for the singnals without pulse or high frequency oscillation, disturbance both methods are effective, which should be chosen according to the evaluating speed and the different accuracy requirements .For the signal with pulse or high frequency oscillation dlsturbance,the denoising based on wavelet transform is obviously better than the denoising based on mathematical morphology. Project Supported by National Science Foundation of China (50407009); Excellent Youth Found of Sichuan Province (No.06ZQ026-012); New Century Excellent Talents of Education Ministry (NCET-06-0799).

关 键 词:小波变换 数学形态学 重构因子 适应性分析 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象