The effects of fast neutron irradiation on oxygen in Czochralski silicon  

The effects of fast neutron irradiation on oxygen in Czochralski silicon

在线阅读下载全文

作  者:陈贵锋 阎文博 陈洪建 李兴华 李养贤 

机构地区:[1]School of Material Science and Engineering,Hebei University of Technology

出  处:《Chinese Physics B》2009年第1期293-297,共5页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No 50872028);the Natural Science Foundation ofHebei Province,China (Grant No E2008000079);the Specialized Research Fund for the Doctoral Program of Higher Educationof China (Grant No 20050080006)

摘  要:The effects of fast neutron irradiation on oxygen atoms in Czochralski silicon (CZ-Si) are investigated systemically by using Fourier transform infrared (FTIR) spectrometer and positron annihilation technique (PAT). Through isochronal annealing, it is found that the trend of variation in interstitial oxygen concentration ([Oi]) in fast neutrons irradiated CZ-Si fluctuates largely with temperature increasing, especially between 500 and 700℃. After the CZ-Si is annealed at 600℃, the V4 appearing as three-dimensional vacancy clusters causes the formation of the molecule-like oxygen clusters, and more importantly these dimers with small binding energies (0.1-1.0eV) can diffuse into the Si lattices more easily than single oxygen atoms, thereby leading to the strong oxygen agglomerations. When the CZ-Si is annealed at temperature increasing up to 700℃, three-dimensional vacancy clusters disappear and the oxygen agglomerations decompose into single oxygen atoms (O) at interstitial sites. Results from FTIR spectrometer and PAT provide an insight into the nature of the [Oi] at temperatures between 500 and 700℃. It turns out that the large fluctuation of [Oi] after short-time annealing from 500 to 700℃ results from the transformation of fast neutron irradiation defects.The effects of fast neutron irradiation on oxygen atoms in Czochralski silicon (CZ-Si) are investigated systemically by using Fourier transform infrared (FTIR) spectrometer and positron annihilation technique (PAT). Through isochronal annealing, it is found that the trend of variation in interstitial oxygen concentration ([Oi]) in fast neutrons irradiated CZ-Si fluctuates largely with temperature increasing, especially between 500 and 700℃. After the CZ-Si is annealed at 600℃, the V4 appearing as three-dimensional vacancy clusters causes the formation of the molecule-like oxygen clusters, and more importantly these dimers with small binding energies (0.1-1.0eV) can diffuse into the Si lattices more easily than single oxygen atoms, thereby leading to the strong oxygen agglomerations. When the CZ-Si is annealed at temperature increasing up to 700℃, three-dimensional vacancy clusters disappear and the oxygen agglomerations decompose into single oxygen atoms (O) at interstitial sites. Results from FTIR spectrometer and PAT provide an insight into the nature of the [Oi] at temperatures between 500 and 700℃. It turns out that the large fluctuation of [Oi] after short-time annealing from 500 to 700℃ results from the transformation of fast neutron irradiation defects.

关 键 词:neutron irradiation irradiation defects FTIR spectrometer positron lifetime 

分 类 号:TN304.12[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象