检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学理学院,吉林吉林132012 [2]吉林大学数学学院,长春130012
出 处:《吉林大学学报(理学版)》2009年第1期40-43,共4页Journal of Jilin University:Science Edition
基 金:国家重点基础研究发展计划973项目基金(批准号:2007CB206904);吉林大学数学学院(所)青年基金
摘 要:基于Euler杆大挠度屈曲的控制方程,构造了屈曲载荷及最大挠度的高精度解析逼近解.利用Maclaurin展开和Chebyshev多项式将控制方程中的正弦项用三次多项式近似代替,得到一个Duffing型方程,再将牛顿法与谐波平衡法相结合解对应的Duffing方程,从而给出Euler杆大挠度屈曲的解析逼近解.求解过程中只需解线性方程组即可构造出屈曲载荷及最大挠度的解析逼近公式.几乎在自变量的全部取值范围内,给出的公式都有较高的逼近精度.Based on the approximate solutions to governing equation the buckling load of buckling of the Euler' s column with large deflection, analytical and the largest deflection of the column have been established First, the sine term that appears in the governing equation is replaced with a polynomial of degree 3 by means of the Maclaurin series expansion and the Chebyshev polynomial approximation. Subsequently, the resulting Duffing equation is approximately solved by combing the Newton' s method with the method of harmonic balance. The method yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution. The new analytical approximations for the buckling load and the largest deflection of the Euler' s column show an excellent agreement with the numerically exact ones, and are valid over nearly the whole range of the independent variable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.92.193