贝叶斯网络的代价敏感结构学习  

Bayesian Networks Structure Learning Based on Cost-sensitive Criterion

在线阅读下载全文

作  者:高妍方[1] 唐云岚[1] 陈英武[1] 

机构地区:[1]国防科技大学信息系统与管理学院,湖南长沙410073

出  处:《小型微型计算机系统》2009年第2期313-316,共4页Journal of Chinese Computer Systems

基  金:高等学校博士学科点专项科研基金项目(20059998019)资助

摘  要:针对最小化错误分类器不一定满足最小化误分类代价的问题,提出了一种代价敏感准则——即最小化误分类代价和最小化错误分类率的双重准则.研究了基于代价敏感准则的贝叶斯网络结构学习,要求搜索网络结构时在满足误分类代价最小的同时,还要满足错误分类率优于当前的最优模型.在UCI数据集上学习代价敏感贝叶斯网络,并与相应的生成贝叶斯网络和判别贝叶斯网络进行比较,结果表明了代价敏感贝叶斯网络的有效性.Classifier based on minimum classification error may not minimize classification cost. A cost-sensitive model selection criterion is proposed. This criterion is in fact a dual rule which fulfills minimum classification cost and minimum classification error. Bayesian network structure learning based on the cost sensitive criterion is researched. In the procedure of search potential structure the criterion demands that the selected model must fulfill minimum classification cost and lower classification error than the current best model. Cost-sensitive Bayesian networks are learned from dataset of UCI and then are compared with the corresponding generative Bayesian networks and discriminative Bayesian networks, results show that cost-sensitive Bayesian network is effective.

关 键 词:贝叶斯网络 误分类代价 代价敏感准则 判别准则 生成准则 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象