面向移动节点定位的传感器网络预唤醒策略(英文)  被引量:1

Proactive Wakeup and Sleep Scheduling Scheme for Localizing Mobile Sensors

在线阅读下载全文

作  者:刘玉恒[1] 陈真勇[1] 吴晶[1,2] 熊璋[1] 

机构地区:[1]北京航空航天大学计算机科学与工程学院,北京100191 [2]中国移动通信研究院产业市场研究所,北京100053

出  处:《软件学报》2009年第1期164-176,共13页Journal of Software

基  金:Supported by the Aero Science and Technology Foundation of China under Grant No.05E551010;the Key Subject Foundation of Beijing of China under Grant No.XK100060423;the Graduate Practice and Innovation Foundation of BUAA of China under Grant No.2007.20~~

摘  要:当无线传感器网络对移动节点进行定位时,锚节点可能会因为处于休眠状态而没有响应移动节点的定位请求,从而导致定位失败.提出一种基于预唤醒机制的动态功耗控制策略P-SWIM,该策略提前通知移动节点周边的锚节点进入全勤的工作方式,而网络内其他锚节点则仍然处于低功耗的工作方式.仿真实验结果表明,移动节点定位方法采用P-SWIM相比于采用静态功耗控制策略(RIS和GAF)能够显著地提高定位性能,且P-SWIM引入的功耗也是3种策略中最低的.此外,通过大量的仿真实验,评估了调节3种策略的各项参数对移动节点定位方法性能的影响,为在实际应用中高效的部署网络提供了参考方案.When localizing a mobile node in sensor networks, it is possible that a seed node is passed by the mobile node during its sleeping mode, which might lead to failed localization. This paper proposes a dynamic node scheduling scheme P-SWIM based on proactive wakeup and sleep. In P-SWIM, each seed is proactively notified if a mobile node is moving toward it. Hence, only these seeds remain active in full duty when the mobile node passes by them, while the other seeds still stay in sleeping mode. Simulation results indicate that localization algorithms based on P-SWIM can achieve better localization performance than those based on the other two static node scheduling schemes, RIS and GAF. Moreover, P-SWIM incurs least running overhead to the network overall power consumption among the three schemes. In addition, the paper evaluates the effect of node scheduling schemes on localization performance by tuning the parameters of each scheme, which presents guidelines for efficient network deployment for mobile sensor positioning applications.

关 键 词:移动传感器网络 自身定位 节点休眠调度策略 预先唤醒与休眠 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象